
179

MEMSTECH’2012, 18-21 April 2012, Polyana-Svalyava (Zakarpattya), UKRAINE

Service-Oriented Architecture for Grid-Enabled

Computer Simulation Software
Anatolii Petrenko

1
, Volodymyr Ladogubets

1
, Oleksii Finogenov

1
, Bogdan Bulakh

1

1. System Design Department, Educational Scientific Complex “Institute of Applied System Analysis”, National Technical University of

Ukraine “Kyiv Polytechnic Institute”, UKRAINE, Kyiv, P. Myrnyi street 19, e-mail: bogdan_bulakh@ukr.net

 Abstract - In this paper architectural decisions for

development of grid-aware simulation software are presented.

The solution relying on the composition of web and grid services

to provide the ability to customize scenarios of analysis is

proposed. The concept of analysis workflows is described briefly

and web service workflows execution procedure is covered.

 Keywords - Simulation, Grid computing, SOA, NetALLTED.

I. INTRODUCTION

 There are a number of challenges being faced by the

developers of modern CAE/CAD tools. Interdisciplinary

research tools capable of modelling objects of different

physical nature are in high demand affecting the internal

models and logic. The problem of the interoperability with

third-party software that can be involved in the complex

analysis scenarios is also urgent. At the same time the

complexity of such objects of analysis forces the use of high

performance computing resources as it may be impossible to

reach the desired accuracy in the reasonable time with only

desktop PC's computing power. Modern tools must provide

some collaboration opportunities, which lead to the virtual lab

environments capable to support collective work on projects

by the groups of engineers or researchers. It’s worth noticing

that both computing resources and their users can be (and

often are) geographically distributed across multiple

countries.

 Such wide range of today’s demands to simulation software

design can be summed up in the following requirements.

Functional capabilities: multiple physical domains support,

rich analysis and visualization toolkit, compatibility with

popular existing tools. Performance: harnessing the power of

computing clusters, grids, clouds. User environment: highly

customizable models and computing scenarios, collective

work support, user-friendly visual user interface. Deployment

and maintenance: cross-platform, distributed solutions, easy

to extend and to upgrade and so on.

II. SERVICE-ORIENTED APPROACH

 In order to cope with requirements mentioned above the

architecture of modern simulation tools must be flexible and

extensible, as opposed to traditional monolithic standalone

applications. The latter variant exposes the following

shortcomings: it must be installed and upgraded on every

machine where it may be used and usually utilizes computing

power of only single machine. To mitigate these restrictions a

client-server model can be implemented, where client side

provides a lightweight front-end to server-side functionality

that can be installed on remote high performance computing

resource.

 Such general approach that separates user interface from

logic is well-known and widely accepted in the architecture of

many software packages including engineering calculation

and simulation tools. But there still are issues like

compatibility, extensibility, harnessing grid computing issues.

The solution proposed leverages the advantages of the

service-oriented architectural pattern for the server-side

implementation to cope with previously listed demands.

 The architecture proposed is a further refinement of the

client-server model where server-side functionality is

decomposed to “ecosystem” of loosely-coupled services.

Service-oriented architecture (SOA [1]) has become popular

solution for distributed enterprise-scale software systems (like

ERP), as it has the following specifics:

 - abstraction and modularity: loosely-coupled services as

the basic functional units having no hard-coded references to

other services, hiding their logic behind the public interfaces

and communicating with clients and each other in a message

passing style can simplify maintenance and introduction of

new functionality;

 - discoverability: services are provided with metadata that

helps them to be categorized and discovered;

 - composability and reuse: with their public interfaces

described in a standard way, services are able to be composed

(orchestrated) statically or even dynamically, manually or

automatically to form higher-level services with desired

functionality.

 Although SOA can be built upon many existing

technologies like RPC/RMI, CORBA, Jini, DCOM etc. the

most successful implementation of the SOA methodology is

web services (WS). WS are compliant to adopted W3C

standards, rely on well-known protocols and technologies like

HTTP and XML, are platform and language independent thus

effectively helping to overcome interoperability problems.

 With these advantages web services can be successful not

only for business applications but for engineering software as

well. Besides previously mentioned general reasons of using

web services by computer simulation tools there are the

following specific ones:

 1. WS-standards are also adopted by the grid community

(e.g. OGSA, WSRF specifications declaring the concept of

grid services) that allows easier utilization of grid computing

resources for compute-intense analysis.

 2. Service orchestration mechanism can be leveraged for

organization of customizable scenarios of computations in the

form of web service workflows.

180

MEMSTECH’2012, 18-21 April 2012, Polyana-Svalyava (Zakarpattya), UKRAINE

III. ANALYSIS WORKFLOWS

 The basic idea of the proposed solution is a representation

of the analysis scenario as the workflow: a set of activities

orchestrated to be executed in the specific order (the most

common visual representation of the workflow is a graph,

usually DAG). Fig.1 shows the example of the analysis

workflow from electronic circuit design involving several

types of analysis and having both sequential and parallel

branches.

Fig.1 Electronic circuit analysis workflow: DC – direct current

analysis, AC – alternate current analysis, OPTIM – optimization

procedures.

 This idea is also shared by so-called Scientific Workflow

systems [2] (e.g. Kepler, web services-oriented Taverna [3],

grid-aware Askalon), but they are general frameworks and are

not specially tailored for engineering tasks like the CAE tools

are.

 The main difference between web service orchestration

tools (orchestrators) like Taverna and the proposed approach

is that the latter has an extra abstraction layer (abstract

workflow or task). This means that user does not compose the

workflow from web services directly but connects abstract

activities being later mapped to concrete web service

invocation scenario automatically by the system. So, the web

service registry should be also supplemented with activities

library and mapper logic.

 This additional overhead from the architectural point of

view allows less overhead from the user’s point of view. First,

user does not need to know about and to deal with all web

service metadata and concrete orchestrator's specifics like

invocation details or XML message handling. Second, non-

trivial mapping becomes possible when single activity can be

mapped to a several communicating web services as well as

when several activities can be mapped to a single web service

invocation. In other words, such intermediate abstract

workflow concept allows separating services and orchestrator

details from user scenarios increasing overall flexibility of the

system.

IV. GENERAL ARCHITECTURE

 The proposed architecture of the grid-enabled service-

oriented simulation platform consists of the following layers

(Fig.2).

 User interface is organized as web interface in form of

web/grid portal. As soon as the current web technologies and

tools like JavaScript, AJAX or RIA (Rich Internet

Application) frameworks allow the creation of user friendly

but sophisticated and powerful enough graphical user

interface this approach can reveal many benefits. It needs no

specific client software preinstalled but web browser (thus

enabling access from wide variety of networked devices

besides desktop PCs like netbooks, smart phones, tablet PCs

etc.). It also simplifies the provision of the virtual

collaborative lab environment.

Fig.2 Main elements of service-oriented architecture of grid-enabled

computer simulation system.

 User interface provides the following functionality:

authorization, graphical workflow editor, project artefacts

browsing (input and output files management, simulation

results visualizers etc.), task execution monitoring and others.

 The server-side part of the architecture has several layers to

reflect the abstract workflow concept described above. First

tier is the portal which organizes user environment: holds

user data and preferences, controls user access, provides

information support, organizes user interface. Its modules are

also responsible for: abstract workflow description generation

according to user inputs, passing this task description to lower

architecture layers for execution, retrieving finished task

results and storing all the project artefacts in the database.

 The next tier is the workflow manager running on the

execution server. It is responsible for mapping (with the help

of service registry) the abstract workflow description to the

DC

OPTIM

OPTIM

OPTIM

AC

User Access Portal

 Web Clients

Access
Server

Execution
Server

Server 1

Web / Grid
Services

Computing
Resources

Single machine Computer cluster Grid resource

Grid
service

Web
service

Server N

Workflow management web service

Orchestration engine

Workflows
Database

Workflow

editor

Projects
Database

Task generation,
control,

monitoring

Portal
logic

HTTP(S)

SOAP / HTTP(S)

SOAP / HTTP(S)

 Web browser

Web
service

181

MEMSTECH’2012, 18-21 April 2012, Polyana-Svalyava (Zakarpattya), UKRAINE

concrete web services orchestration scenario expressed in the

orchestrator-specific input language (like WS-BPEL for

BPEL engines or t2flow for Taverna). It also initiates the

execution of the concrete workflow with the external

orchestrator, monitors its state and fetches the results.

 Concrete workflow operates with functional SOAP web

services representing the basic building blocks of system's

functionality: data preparation and adaptation, simulation,

optimization, results processing etc. Compute-intensive steps

are implemented as grid services interacting with grid

resources to run computations as grid jobs. Introduction of

the new functionality to the system is accomplished through

the registration of the new web or grid services.

 The overall sequence of user scenario execution is as

follows. User passes login procedure on the portal and

accesses workflow editor. He may choose and setup the

activities available in repository to compose the scenario

workflow he wants to execute. It must be noted that some

activity sequences may not be allowed due to logical

incompatibility (e.g. transient analysis as a predecessor or

successor of frequency domain analysis) or data formats

incompatibility (e.g. between activities from different

providers). These rules must be checked at design time by

editor.

 Then the execution phase is initiated by user. User task

description is passed to workflow management service on

execution server, where this abstract workflow is translated to

the concrete one. Workflow manager parses the description

and checks for errors, requests metadata from service registry

and performs mapping from activity sequence to web service

invocations sequence, described in one of the standard

orchestration languages. Mapper unit of the workflow

manager should arrange web services in correct invocation

order according to abstract workflow, organize XML

messages and variables initializations and assignments

between calls, and provide the ways for run-time control

(workflow monitoring, cancelling, intermediate results

retrieving etc.). Then this concrete scenario is executed by

orchestrator.

 When orchestrator invokes grid service the latter initiates

the submission of grid job to grid resource: it prepares job

description and communicates with grid middleware to

schedule and execute grid job.

 User is informed about the progress of the workflow

execution by monitoring unit communicating with workflow

manager. When execution is finished user can retrieve the

results, browse and analyse them and repeat this sequence if

needed.

V. IMPLEMENTATION

 These presented architectural principles were implemented

during the work on the project of development of the

“Interdisciplinary complex of optimal mathematical

modelling

 in grid environment with the automatic composition and

solving of equations of corresponding mathematical models”

executed by ESC “IASA” of NTUU “KPI”. Server-side

concrete workflow management is based on standard web

service orchestration description language WS-BPEL 2.0

(Business Process Execution Language) [4]. Simulation grid

services rely on the functionality of the ALLTED [5]

simulation software and compatible with computing resources

accessible through Nordugrid ARC [6] grid middleware. The

test prototype of this system was deployed at the resources of

the NTUU “KPI” HPC Centre.

REFERENCES

[1] T. Erl. Service-Oriented Architecture: Concepts,

Technology & Design. New York: Prentice

Hall/PearsonPTR, 2005, 792 p.

[2] V. Curcin, M. Ghanem. Scientific workflow systems - can

one size fit all? // Proc. of Biomedical Engineering

Conference CIBEC2008. Cairo International, 2008, P.1-9.

[3] Taverna Workflow Management System:

http://www.taverna.org.uk/

 [4] Web Services Business Process Execution Language:

 http://docs.oasis-open.org/wsbpel/2.0/wsbpel-v2.0.pdf

[5] A. Petrenko, V. Ladogubets, V. Tchkalov, Z. Pudlowski,

ALLTED – a computer-aided engineering system for

electronic circuit design. Melbourne: UICEE, 1997,205 p.

 [6] Nordugrid Advanced Resource Connector:

http://www.nordugrid.org/arc/

VI. CONCLUSION

 The multi-layered architecture of the grid-enabled

computer simulation software was presented. This

architecture is characterized by the following: it is web-

accessible, its functionality is distributed across the ecosystem

of both web services and grid services (enabling utilization of

grid computing resources); it is compatible with adopted

standards and protocols; it supports custom user analysis

scenario development and execution; it hides the complexity

of web-service interaction from user with abstract workflow

concept and graphical workflow editor. The prototype

developed according to this architecture has proven the

working ability of the proposed solution. The further

development of this approach can involve semantic

technologies for automatic workflow synthesis and analysis.

VII. ACKNOWLEDGEMENTS

Results presented in the paper have been carried out within

the works supported by the Ukrainian State goal-oriented

scientific-technical programme for implementation and

application of Grid technologies and a Marie Curie

International Research Staff Exchange Scheme Fellowship

within the 7th European Community Framework Programme

– EduMEMS - Developing Multіdomaіn MEMS Models for

Educational Purposes, no. 269295.

