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 Abstract – In early stage of the design process, 

modeling is a crucial phase as it allows the designer 

estimating the device performance. Very often, this 

phase is time-consuming, especially when FEM 

simulator is used. Hence, a fast and reliable method is 

desirable. Moreover, in case of simple structures 

which behavior is described with quite simple 

equations, the use of analytical model is obvious. In 

this paper we present a complete model of a 

membrane bending in range of large deflections that 

has been developed using FEM simulations. 
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membrane, large deflection. 
 

I. INTRODUCTION 

 Membrane is one of the most common structure used in 

MEMS devices. It is used in variety of pressure sensors, 

CMUT, micropumps, etc. In order to design a device with 

specified performance one need to perform simulation 

process. In many cases FEM simulation is used. However, 

this method needs to create a 3-D model and to solve 

large number of differential equations (depending on 

mesh density). If the optimization process is needed, the 

FEM simulations can take a long time disproportionately 

to structure complexity. Thus, the analytical modeling is a 

very convenient method to obtain rather precise results in 

a very short time. The modeling of membrane commonly 

uses the theory of plates and shells [1] that describes the 

membrane behavior by one differential equation. The 

drawback of this method is the function needed to solve 

the equation. In general, the function approximates the 

membrane form and its highest order to increase precision 

makes the solution more complex. It was found [2] that 

the membrane deflection has linear dependence on applied 

load in range of small deflection. Thus, the maximal 

deflection in the membrane center can be described with 

one simple linear equation that simplifies the solution 

significantly. The linear range of membrane deflection is 

commonly used in variety of MEMS due to simplicity of 

conversion into usable output signal. However, there are 

some other applications that need larger deflection where 

small deflection theory become useless. One of them is 

bulge test technique to characterize materials properties 

like Young’s modulus and residual stress [3]. Then, the 

large deflection theory has to be used and the equation 

describing the membrane deflection is third order. This 

paper presents the complete analytical model of 

membrane bending taking into consideration large 

deflection of the membrane. Isotropic materials and 

commonly used anisotropic silicon are taken into account. 

II. MEMBRANE BENDING 

 We consider a structure that consist of a perfectly 

clamped membrane of length a, width b and thickness h as 

shown in figure 1: 

              
Fig.1: Geometry of the membrane. 

 

 The classical law describing the membrane bending 

made of orthotropic material under the pressure P for 

small deflections is [1]: 
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D0 is a rigidity, E is a Young modulus, ν is a Poisson 

ratio, α is an anisotropy coefficient and w is a change of 

membrane deflection due to applied pressure. In real 

devices, a residual stress σ0 may remain in the material 

due to the technological process, changing the membrane 

stiffness. Then, the equation   (1) takes the 

following form [1]: 
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[2] that membrane deflection has linear dependence on 
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applied pressure. Thus, the equation   (1) 

can be simplified into following form: 
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where wmax is the maximal membrane deflecion in its 

centre due to applied pressure and C1 and C2 are 

coefficients dependent on the ratio b/a and for C1 on 

anisotropy coefficient (material crystallographic 

direction). The values of these coefficients are presented 

in [4].  

 In case of large deflections the assumption that there is 

no deformation in the middle plane of the membrane, is 

not valid and additional stresses must be taken into 

account [1]. Thus, the membrane bending is described 

with following equation: 
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where Nx, Ny, Nxy are components of stress induced in the 

middle plane of the membrane. This makes the solution 

more complex as it has to be iterative. In each step the 

new value of induced stresses are obtained that is 

dependent on membrane deflection. The calculations stops 

when the value of deflection become constant. In general, 

the solution requires over a dozen of steps (depending on 

assumed precision) increasing the simulation time 

significantly. The advantages of simplified model 

describing only the maximal membrane deflection are 

even more visible in case of large deflections. It was 

found that the membrane bending is described with 

equation of third order as shown below: 
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where C3 is a coefficient dependent on the ratio b/a and 

Poisson coefficient. In our previous work [4], the values 

of coefficients C1 and C2 have been estimated. In next 

paragraph, values of coefficient C3 will be estimated 

including the same estimation procedure.  

 This analytical model allows also calculating the 

membrane deflection in one step as general formula for 

roots of third order equation exists. If we use Cardano’s 

method using the normalized notation of equation of third 

order: 

023 =+++ dcxbxax    (6) 

for equation  (5) we will find that coefficient h is 

always positive (except buckling state). Thus, only one 

stable real root exist: 
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III. ESTIMATION PROCEDURE AND RESULTS 

 In general three methods exist to find the coefficients of 

equation  (5): analytical, experimental and using 

FEM. The first one needs to find exact solution of 

membrane deflection that is very complex and precision 

of this method is rather  low [5]. The second one requires 

real structures that are exposed to influence of 

technological process. The third one requires just several 

simulations of test structure and interpolation process. As 

the FEM simulation is very precise as it uses the 

differential equation and one can simulate the exactly 

assumed structure, we decided to use this method, the 

same as in previous work [4]. 

 In this paper we consider three kinds of materials: 

silicon cut in <100> and <110> direction (any other 

anisotropic material has to be considered separately) and 

isotropic material. The simulations are performed for 

membranes of ratio r in range of 1 to 3. Membranes with 

ratio greater than 3  are known as long rectangular 

meaning that the deflection become independent on ratio r 

[5]. The range of applied pressure is in range to cover the 

range of small and large deflection. 

 The method of estimating coefficient C3 uses the 

transformation of equation  (5) into the form: 
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Then, the function )( 2
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= should be a straight line. 

The coefficient A of equation (8) is fixed using values 

from [4] and B is approximated. The exemplary graph of 

the function with its approximation is presented below: 

 
Fig.1: Exemplary function describing membrane deflection. 

 

 Then the coefficient C3 is extracted from coefficient B. 

Because this coefficient depends on Poisson’s ratio, in 

case of isotropic material further approximations has to be 

done to find the exact formula. The dependence of 

coefficient C3 on Poisson’s ratio is presented in the figure 

below: 
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Fig.2: Dependence of coefficient C3 on Poisson’s ratio. 

It has been found that this dependence can be describes 

with following relation: 

( )ν⋅−= ba CCC 333 1   (9) 

where C3a and C3b are coefficients to be approximated. 

 The results of simulations are presented in the tables 

below wherein all approximated values of coefficients of 

equation  (5) are presented: 

TABLE 1 

VALUES OF COEFFICIENTS C1 AND C2 

Coefficient C1 C2 

Material Isotropic 
Silicon 

<100> 

Silicon 

<110> 
- 

b/a 

1 792.449 866.36 728.75 15.35 

1.5 455.894 488.32 427.76 11.42 

2 394.552 410.58 380.48 10.34 

2.5 382.591 389.44 376.51 9.88 

3 380.325 381.98 378.35 9.55 
 

TABLE 2 

VALUES OF COEFFICIENT C3 

Coefficient C3 

Material Isotropic 
Silicon 

<100> 

Silicon 

<110> 

b/a 

1 32.07·(1-0.426ν) 29.12 34.91 

1.5 20.57·(1-0.426ν) 22.11 21.98 

2 19.11·(1-0.426ν) 21.39 21.19 

2.5 18.98·(1-0.426ν) 21.52 21.25 

3 18.85·(1-0.426ν) 21.55 21.23 

  

 Summarizing, the equation  (5) combined with 

coefficients from tables 1 and 2 makes up the complete 

model of membrane bending including small and large 

deflection. It allows calculating maximal membrane 

deflection in its center of rectangular shape of any ratio 

a/b. The model is valid for any kind of residual stress 

(tensile and compressive) except buckling effect. The 

precision is very high as the model uses the data from 

FEM simulations. The only source of errors are numerical 

errors resulting from finite mesh density and rounding. 

This leads to resulting points that are not exactly on the 

straight line producing some errors in approximation 

process. Nevertheless, the difference should not be greater 

than 1%.  

IV. CONCLUSIONS 

 In this paper, the analytical models of membrane 

bending were described including large deflections. The 

simplest model needs a specific values of coefficients to 

be found depending on material which the membrane is 

made of. The FEM simulation was used to estimate these 

values. This method provided obtaining the model that is 

very precise, comparable to FEM simulation. Moreover, 

this model is much faster than FEM simulation. Thus, it 

can be very useful in design phase wherein estimation of 

the device performance is desirable. Moreover, it can be 

also used in optimization phase reducing time 

consumption and simplifying it. Thus, it can be 

concluded, that the analytical model is a powerful tool that 

can be used as an supplement of FEM simulator. 
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