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Abstract—Simulation step is nowadays one of the crucial in 

the design process of the device. It allows estimating the device 

performance and reducing the cost of the fabrication process. It 

is also very useful in statistical approach. As technological 

process is not ideal and always produce some deviation from 

established parameters, the final device has variable 

performance. In this paper, the statistical approach using Monte 

Carlo modelling is presented in order to estimate the stiffness of a 

rectangular membrane of various length to width ratio. 
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I.  INTRODUCTION 

Membrane structures are the basis of many applications in 
micromechanics [1]. Wide spectrum of functional targets 
defines construction of the membrane (in particular – poly 
layer matrix, composite, profiled, corrugated, perforated, etc.), 
their geometrical and topological parameters with a range of 
thickness from 0.1 m to 100  m and length/width from a few 
micrometers to a few millimeters [2]. Because of this, an 
optimization problem becomes the actual one in order to 
achieve better performance in sensors. 

Monte Carlo analysis is used to investigate the impact of 
fabrication tolerances on the device performance. Such analysis 
uses component tolerances and statistical distributions to 
randomly vary system parameters during successive 
simulations.  This work is deduced to the results of statistical 
modeling of membranes in terms of theirs stiffness coefficient. 

II. MEMBRANE MODELLING 

The mathematical model of a membrane in a deformed state is 

described in a form of differential equation [3] 
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where w1 (x,y)  is  the normal  displacement for a point of the 

membrane at a location (x, y), P is the applied pressure in the 

direction of   and the term D represents the rigidity of the 

membrane, which is related to Young’s modulus (E), 

Poisson’s ratio ( ) and the thickness of the material (h) 

according to  
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In the case of a membrane with fixed boundaries, several 

important qualitative observations can be made:  

 The maximum displacement occurs at the center of the 

membrane. 

 The maximum stress occurs at the center points of two 

opposite edges and in the center of the membrane. 

 The stresses along the edge and the center have different 

signs. 

 These locations with high stress values are preferred for 

the placement of piezoresistive sensors for detecting 

membrane deformation. 

 
In many applications, only the maximum displacement and 

the maximum stress are of interest. These can be calculated 
using an empirical formula. The maximum displacement at the 
center (wc) of a rectangular diaphragm (with the dimension of a 
x b) under a uniform pressure of P is 
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with the value of the proportional constant C1 determined by 

the ratio of a to b. Its value can be found by using the look-up 

table (see Table I). The stress at the center point of the long 

edge and the stress in the center of the plate are 
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where 1 and 2 are coefficient dependent on ratio a to b that 

can be found in the literature [6]. 

In order to get a valuable and precise solution, the analysis is 

applied with the maximal deflection  by means of analyzing 

the following equation [3]: 
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that includes the membrane residual stress and initial 

deflection. The right-side second term represents an equivalent 

force corresponding to the initial deflection  from the internal 

mechanical strains of the membrane materials structure. The 

left-side second term represents the residual stress of the 

membrane. C1 and C2 are coefficients, depending on material 

anisotropy and geometric sizes.   For two orientation of silicon 

they are equal [4][5]: 

TABLE I.   
LOOK-UP TABLE FOR COEFFICIENTS C1 AND C2 

 
 

III. MONTE CARLO ANALYSIS 

The analysis was performed for membranes with dimension 
of 200 µm width and 4 µm of thickness. Membranes length 
varies respectively to the membrane ratio b/a presented in the 
Table I. As input parameters the dimensions and residual stress 
variation were chosen. The length and width varies up to 2 µm. 
The error is usually produced during the lithography process 
and mask fabrication. The thickness varies up to 0.2 µm due to 
inaccurate etching process. The residual stress varies from -
10 MPa to 10 MPa that is a typical value for membrane 
fabricated in bonding process or for membranes covered with 
other layers (insulation, biocompatibility etc.). The analysis 
was performed for one million samples of input parameters and 
assumes the normal distribution. As an output parameter the 
membrane spring constant was chosen that is calculated using 
following formula: 
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Below the modeling program’s source code in a Matlab 

language is listed: 

 
%%% clears the variables 
clear all; 
close all; 
clc; 
a = 200;                % microns 
b = 200;                % microns 
t = 4;                  % microns 
str = 0e+6;            % MPa 
%% The variances parameters of membrane 
a_v = 2;                % microns 
b_v = 2;                % microns 
t_v = .2;               % microns 

str_v = 10e+6 ;          % MPa 
%% Creates the random variables to use 
r_a = randn(1,1e6);   
r_b = randn(1,1e6);   
r_t = randn(1,1e6);  
r_str = randn(1,1e6);  
%% Creates the vectors to use in calculating k 
a1 = a + a_v*r_a; 
t1 = t + t_v*r_t; 
b1 = b + b_v*r_b; 
str1 = str + str_v*r_str; 
%% Does that conversion thing %%%%%%%% 
convert = 1e6; 
b2 = b1/1e6; 
a2 = a1/1e6; 
t2 = t1/1e6; 
%% Declares the elastic modulus as a material 
property 
E = 160e+9;     %MPa 
v=0.279; 
str=10e+6; 
C1=  [866.36 488.32 410.58 389.44 381.98];            
C1_2=[728.75 427.76 380.48 376.51 378.35];            
C2=  [15.35  11.42  10.34  9.88   9.55];            
ratio = [1 1.5 2 2.5 3]; 
for i=1:5 
    k1=1*(E.*C1(i).*t2.^3)./(12*(1-v.^2)*(b2).^4) 
+C2(i).*t2.*str1./(b2).^2;          
    k2=1*(E.*C1_2(i).*t2.^3)./(12*(1-v.^2)*(b2).^4) 
+C2(i).*t2.*str1./(b2).^2;        
    variance = var(k1);  variance2 = var(k2); 
    S1 = variance^.5;   S2 = variance2^.5; 
    x1 = (mean(k1) - 4*S1):S1/4:(mean(k1) + 4*S1); 
    x2 = (mean(k2) - 4*S2):S2/4:(mean(k2) + 4*S2); 
    [h,x1] = hist(k1,x1); 
    [hh,xx] = hist(k2,x2); 
    figure; 
    %% plots the histogram 
    %subplot(2,1,1),plot(x1,h/max(h),xx,hh/max(hh)); 
    subplot(2,1,1),plot(x1,h,xx,hh); 
    title(['Membrane ratio = ',num2str(ratio(i))]); 
    xlabel('Spring Constant (N/m)') 
    ylabel('Number of samples') 
    legend('Si <100>','Si <110>'); 
    %% creates the vector of standard deviation for 
plotting 
    y = -4:.25:4; 
    h2 = h/max(h); hh2=hh/max(hh); 
    subplot(2,1,2),  
    hold on; 
    plot( y, h2, 'b-', y, hh2, 'g*' ); 
    xlabel('Standard Deviation from Mean') 
    ylabel('Normalized Density') 
    legend('Si <100>','Si <110>'); 
end 

 

IV. RESULTS 

The results of Monte Carlo calculations are available on the 
Fig. 1. The calculations were performed for two crystal 
orientation respectively to the Table I. The upper parts of Fig. 1 
present the distribution of spring constant value. The lower 
parts of Fig. 1 present the square deviation of spring constant 
from the mean value M[kmembr] described with following 
formula : 
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where Var is the variance. 
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Fig.1. Calculated control number of spring and normalized density for 

membrane spring constant  (upper figure) and standard deviation from mean 

value (lower figure) for various membrane a/b ratio 

 
The results presented above show that the highest spring 

constant occurs for the square membrane. Also in this case  the 
highest difference between spring constant values for two 
crystallographic orientations is observable: the average spring 
constant for <100> orientation is around 20% higher than for 
<110> orientation. When increasing the membrane length-to-
width ratio, the value of spring constant decreases significantly. 
For the ratio of 1.5, it has a value almost 50% lower than in 
case of square membrane. Then it still decreases but near the 
ratio of 3 it becomes constant (what is known as a property of a 
long membrane). Moreover, it can be observed that with the 
increasing of the membrane ratio, the difference between two 
orientations seem to disappear. For the last case, with 
membrane ratio equal to 3, there is basically no difference 
between the results obtained for both orientations. 



As far as the probabilistic distributions are concerned, they 
are basically the same for all cases.  The distribution of 
membrane spring is similar to normal as it is linearly dependent 
on all input parameters.  For all cases the standard deviation is 
equal to 16% of mean value.  It may be concluded that most 
times the spring constant value is located within 2 standard 
deviations from mean (95%).  Within 1 standard deviation is 
located about 70%. Therefore, a very small deviation in 
dimensions of  the membrane leads to a relatively high change 
in spring constant. Let us now take into consideration the 
device that is based on the membrane. In a typical 
technological process the properties may be different for each 
membrane fabricated on the same wafer. Therefore, it is not 
possible to guarantee predicted performance for each device. 
Some devices will have worse performance and some should 
be rejected as they completely do not meet the requirements.  

V. CONCLUSIONS 

The statistical approach  is very important in many domains 
of knowledge. In case of micromachined membranes it shows 
that even very simple devices may have significantly different 
performance than the expected one. The sources of errors 
seems to be negligible as the technological process allows 
fabrication of micromembranes with very high resolution. 
However, the simulations showed that the deviation from mean 
value is relatively high and many of devices will not meet the 
requirements. Therefore, the statistical simulation should be 
always performed in order to estimate the deviation of the 
device performance. Moreover, the results shows that the 

sensibility in many sensing devices based on the membrane 
will vary depending on the sample. Thus, each device should 
be properly calibrated. Thanks to the statistical simulations, it 
is possible to predict the yield production. Therefore, one can 
estimate the cost of the device before the fabrication what will 
be very useful to achieve the project success. 
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