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Abstract: There are developed Matlab® code for 

optimize the cantilever geometric dimension for sensors of 
force field measuring. 
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I. INTRODUCTION 
The oscillating system with concentrated elastic (elastic 

body stiffness m ) and inertial (working body mass m ) 
parameters is a basic model for designing sensors of external 
floated physical fields of the cantilever beam type. The phase 
portrait of the dynamic state of the oscillatory systems of 
the cantilever beam – nanoobjects type with interaction 
potential ( )U r  is simulated by the system of equations: 
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where: e  – the so called “deep potential well” on the 
Lennard – Jones curve; r  – distance vector;  kW  – kinetic 
energy.  

At distance 0W ®  it becomes non equal to zero while 
cantilever beam comes closer to a nanoobject. These sensors 
can record the external influences on the micro and nanoscale 
[1,2], to develop methods for measuring physical parameters 
of materials [3-7], to investigate the electric field distribution 
near the surface of nanoobjects [8,9]. 

In this system, the field interaction between cantilever beam 
and analysis nanoobjects is simulated by linear spring with 
stiffness m , corresponding to the linearization of Lennard – 
Jones potential in static equilibrium state. When the location 
from cantilever beam to test object is far, then it takes a 
horizontal position, when approaching an object,  the 
cantilever beam begins to deform, but at some distance from 
the object it takes a horizontal position – this is a static 
equilibrium [10]. 

The amplitude of the system is determined damping 
properties, which are determined by Young’s modulus and 
the geometrical dimensions of the suspension. Young’s 
modulus for a particular task is usually defined by the micro 
device designer, so for ensuring the optimal oscillation 
amplitude of the inertial mass is optimize the geometric 
dimensions. 

The measurements are based on the frequency of resonance 
oscillations of the cantilever beam or cantilever beam. For 
systems with concentrated linear elasticity (rectangular 
console beam with width h , thickness t  and length L ) and 
inertia, square of resonance frequency, the objective function 
of optimization for oscillatory system: 
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where m  is the spring constant of the rectangular cantilever.  
It will be assumed that there is no change in the spring 

constant. m  is the original effective mass, t  is the beam 
thickness, L  is length of the cantilever, r  is beam density, 
Es  is Young’s modulus, I  is area moment of inertia. 
Moment of inertia can be expressed as: 

 2I y dS= ò , (3) 

where dS  is the infinitesimal area element; y is the distance 
of this area element to the origin interest.  

It seems that random changes in the physical and 
geometrical parameters of the oscillator will lead to 
fluctuations of resonant frequency, and thus to increase 
measurement error. That is why one of the urgent problems is 
the optimization of geometric parameters of the cantilever 
beam.  

II. PHYSICAL AND MATHEMATICAL MODEL 
In Figure 1, the scheme of cantilever beam is presented.  

 
 

Fig.1. The rectangular cantilever beam. 
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The Euler – Bernoulli equation provides a first order 
description of the deflection ( , )w x t  of an elastic beam [1]:  
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where: S  is beam cross – sectional area.  
Bound conditions for a cantilever beam equal:  
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Initial conditions equal:  
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Deflection free end beam equal: 

 2 3(3 )
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III. STATISTICAL OPTIMIZATION 
Let us connect the optimization of the geometrical 

parameters, considered above, with the constraints of nature. 
According to [11,12], constraints conditions should be 
included into program structure: 
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which take into account, that the most mechanical stresses 
during the cantilever beam bending appears onto the opposite 
surfaces (top surface stretches, bottom shrinks), which are 
placed at a distance  

max 2
ty = ,                                (11) 

from the neutral axis without mechanical stresses along it. 
Here s  is stress in the beam, maxs is the maximum bending 
stress . 

The Matlab® code for optimization of silicon cantilever 
beam values opth  and optL  is presented: 

clear all; 
close all; 
clc;  
FOS=5; % Factor of Safety 
F= 1; % Force 
t=5; % thickness cantilever mkm 
E_sigma=190e3; % Youngs Modulus,[13] 
sigma_Yield=70; %[13]  
def_max= 1; % Maximum allowable deflection 
stept=0.01; 
tmin=2; 
tmax=15; 
Lmin= 20; % Minimum length cantilever 
Lmax=500;% Maximum length  cantilever 
stepL=0.1; 
Eq1= 6*F*FOS/(t^2*sigma_Yield); 
Eq2=4*F/(E_sigma*def_max*t^3); 
L= Lmin:stepL:Lmax; 
[m,n]=size(L); 
h1=5; 

for j=1:1:n 
h1(j)=Eq1*L(j); 
end 
h2=5; 
for j=1:1:n 
h2(j)=Eq2*(L(j)^3); 
end 
plot(L,h1,L,h2); 
grid on;    
xlabel('L (lenght canteliver),mkm');  
ylabel('h1,h2(width canteliver),mkm');  
title('Plot for two constraint conditions') 
ylim([0 20]) 
 figure(2); 
[t1,L1]=meshgrid(tmin:stept:tmax,Lmin:stepL:Lmax); 
 hsurf1=L1*6*F*FOS./(t1.^2*sigma_Yield); 
hsurf2=(L1.^3)*4*F./(E_sigma*def_max*t.^3); 
 surf(L1,t1,hsurf1); 
shading interp; 
hold on 
surf(L1,t1,hsurf2); 
view([60 20]); 

Analysis of the literature indicates a considerable data 
scatter relatively to the value of parameter sigma_Yield. 
Values of the relevant parameters have taken from work [13]. 
Since silicon is a brittle material, the ultimate strength value 
is taken for calculating the factor of safety (FOS = ultimate 
strength/maximum stress) design margin over the theoretical 
design capacity. It is shown in Figure 2, that optimized values 

opth  and optL  defined as the coordinates of the curves 

intersection point  equal 320optL mm=  and 5.5opth mm= .  
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Fig.2. Plot of the two curves h1(L) and h2(L). 
 
First of the coordinate described by the equation  
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and second of the coordinate described by the equation 
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where maximum deflection 
2
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The wider cantilevers allowing increasing the value of 
the marginal mechanical stress. Parameters of the standard 
rectangular cantilever: length 200 mm , thickness 1-5 mm , 
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width 30 mm , weight about 35 ng and stiffness order 37 
N/m, so the resonant oscillation frequency about 10-400 kHz 
[14], while by the following formula: 

9
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35 10rez kHz
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×

      (15) 

In Figure 3 is shown the 3D-figure with intersection  
of the two surfaces h1(L,t) and h2(L,t). The optimized values 
of parameters opth , optL , topt  is situated in points of 

intersection.  

 
Fig.3.  Plot of the two surfaces h1(L,t) and h2(L,t). 

IV. CONCLUSION 
In this paper was created the program of optimization 

geometric dimensions of the cantilever beam in order to build 
in further work the maps of fluctuation spectrum of the 
oscillation amplitude of console with random changing of 
external influence on it. 
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